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Effect of helicity on the effective diffusivity for incompressible random flows
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The advection of a passive scalar by a quenched~frozen! incompressible velocity field is studied by exten-
sive high precision numerical simulation and various approximation schemes. We show that second-order
self-consistent perturbation theory, in the absence of helicity, perfectly predicts the effective diffusivity of a
tracer particle in such a field. In the presence of helicity in the flow, simulations reveal an unexpectedly strong
enhancement of the effective diffusivity which is highly nonperturbative and most visible when the bare
molecular diffusivity of the particle is small. We develop and analyze a series of approximation schemes which
indicate that this enhancement of the diffusivity is due to a second order effect, whereby the helical component
of the field, which does not directly renormalize the effective diffusivity, enhances the strength of the nonhe-
lical part of the flow, which in turn renormalizes the molecular diffusivity. We show that this renormalization
is most important at a low bare molecular diffusivity, in agreement with numerical simulations.

DOI: 10.1103/PhysRevE.63.061205 PACS number~s!: 47.27.Qb, 51.20.1d, 66.10.Cb
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I. INTRODUCTION

The advection of passive fields, subject to molecular d
fusion and convection by turbulent fluid, has been ext
sively studied by both theoretical and computational te
niques@1–6#. By comparing the results of simulation wit
the theoretical prediction for various long-range quantiti
the efficacy of the theoretical methods can be tested, albe
somewhat artificial models. The applications to the phys
of complex systems and engineering are manyfold. In pr
tical problems we need to calculate the bulk properties
random media given statistical models for the disor
present. In general, the complexity of these real world pr
lems means that one must resort to approximation sche
to calculate these large-scale bulk properties. It is there
essential to verify various methods of analysis on mo
problems before one can be confident that these or sim
methods can be applied to more realistic systems. The
cess of an approach depends on whether the approxim
preserves the essence of the physical mechanism respon
for determining the long-range parameters of the advec
in terms of the parameters describing the local characteris
of the flow. In this paper we consider advection in a heli
Gaussian turbulent flow, which was originally studied in R
@4#. The surprising result, observed on the basis of simu
tion, is that the long-range effective diffusivityke is greatly
enhanced by the presence of the helicity by more tha
factor of 2, the effect being strongest for a small molecu
diffusivity k0 . In the absence of helicity the calculation
ke to two loops in self-consistent perturbation theory agr
accurately with the simulation for allk0 . However, such an
approach predicts that even maximal helicity will have on
a small effect of the order of 10%. This is in stark contrast
the results of simulation. The puzzle is to explain these
sults for what is a relatively simply posed system. A succe
a
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ful theoretical approach will involve infinite resummations o
contributions, and it is in this sense that the enhancemen
nonperturbative.

In this paper we discuss a possible resolution of the co
flict between theory and simulation by using various met
ods to identify the low-wave-number effective theory gov
erning the diffusive dispersal of particles advected in th
turbulent flow when helicity is present. The derivation of th
effective theory is guided by the renormalization group~RG!
idea that the Green function at low wave number is, in som
approximation, the solution to an effective second-order d
ferential equation whose parameters are determined s
consistently in terms of the original or ‘‘bare’’ defining the
model. The effect of helicity in the flow causes the turbule
velocity fieldu(x,t) to be additively renormalized by a term
proportional to the vorticity,v5“3u. The coefficient of
proportionality is a pseudoscalar which is generated by t
axial-vector nature of the helical flow and so depends on t
helicity h, defined in terms ofu by

h5^u•“3u&, ~1.1!

where ^•& denotes the ensemble average over the rand
velocity field. In our model the magnitude ofh is measured
by a parameterl, 0<l<1, and the results are given in term
of l. The usual perturbative result for the dependence ofke
on l is thatke is a series inl2 for all values ofk0 . This is
self-evident since the magnitude ofke is independent of the
sign of l. The simulation is seemingly consistent with thi
fact for l,0.2 atk050 but is not well fitted by any simple
approach, and for largerl the curve lies far higher than the
naive calculation. We discuss an improved self-consiste
scheme which expresses the Green function and vertex fu
tions as solutions to integral equations which are solved in
low-wave-number approximation. This method leads to
strong enhancement ofke for increasingl and, as such, is a
good indication that we are on the right track. However, f
small l the effect is paradoxically too strong, leading to
©2001 The American Physical Society05-1
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nonanalytic dependence ofke on l which is predicted to be
ke;l2/3 in the one-loop case. This is possibly due to t
approximation made in obtaining the solution, but it is
complex matter to ascertain whether this is so. An alterna
approach is to use the functional Hartree-Fock meth
which leads to an integral equation for the Green funct
self-energy as a function of wave number. The result of t
method forke(l) is better behaved at smalll, but the pre-
dicted enhancement is not large enough and does not fi
simulation data. In general, the effect is most pronounced
small k0 , and empirically from our simulation we find tha
the results distinguish the regionsk0!0.2 and k0@0.2.
There is a pronounced dip inke vs k0 at k0;0.2 for l51.
This dip is not predicted by either of the methods mention
so far.

We also present a renormalization group approach wh
shows a mechanism for the enhancing effect of helicity
ke . The renormalization group is normally most useful f
computing anomalous exponents, since they are gene
independent of much of the details defining the model:
idea of universality. It is much more difficult to control
standard RG analysis if it is used to calculate the coefficie
of scaling behavior, i.e., observables likeke . However, in
Ref. @7# we reported on a successful use of the RG in p
dicting ke for gradient flows, and we believe that an R
analysis can generally give a strong indication of the kind
mechanism which influences the size of parameters con
ling the large-scale characteristics of advection. In this pa
we show that the flow at large wave vector can stron
enhanceke when k0 is small. In particular, this approac
does provide a mechanism for the dip observed inke vsk0 at
k0;0.2 for l51.

In Sec. II the model and the formalism are reviewed.
Sec. III the perturbation theory is briefly described. In S
IV the self-consistent integral equations for the Green fu
tion and vertex functions are derived to one-loop, and
small wave vector approximation forke is derived. In Sec. V
the functional Hartree-Fock method is examined. In Sec.
the renormalization group approach is explained. In Sec.
the conclusions are presented.

II. MODEL AND FORMALISM

In Ref. @4# the problem of a passive scalar advected by
incompressible turbulent flow with a molecular diffusivi
was studied. The turbulent fluid velocity fieldu(x,t) was
described by its statistical properties which were assume
be Gaussian, and so fully determined by the velocity au
correlation function. In the original study the flow was tim
dependent, but since the enhancement ofke by helicity in the
flow is also present for time-independent flows, we assu
here, for simplicity, a time-independent flow~i.e., quenched
or frozen turbulence! for which the autocorrelation function
can be expressed in the following form:

^ui~x!uj~x8!&5E d3k

~2p!3 eik•~x2x8!Fi j ~k!. ~2.1!
06120
e
d,
n
is

he
r

d

h
n

lly
e

ts

-

f
l-

er
y

.
-
e

I
II

n

to
-

e

The ensemble of velocity fields was taken to be homo
neous and isotropic, and so for incompressible fluidsFi j (k)
can be written as

Fi j ~k!5F~k!~k2d i j 2kikj !1C~k!i e im jkm , ~2.2!

whereC represents the presence of helicity in the flow.
Ref. @4# it was assumed thatF and C took the factorized
forms

F~k!5
~2p!3

3
A2E~k!,

~2.3!

C~k!5
~2p!3

3
A2kE~k!sin 2c,

whereA is chosen so that

E dkE~k!51, ^u•u&5u0
2, ~2.4!

and whereu0 is the rms velocity. Choosing the anglec to be
k independent means that the helicity is of equal strengt
all wave vectors. The helicity parameterh is been defined in
Eq. ~1.1!, and with the definitions in Eq.~2.3!, we find

h5
2

3
A2^k3&sin 2c, ~2.5!

where^k3& is the expectation value with respect to the d
tribution E(k). The passive scalar fieldQ(x,t) is advected
according to the equation

dQ

dt
5k0¹2Q2“•~uQ!, ~2.6!

and the effective, or long-range, diffusivityke is defined by

^x•x&~ t !5 K E d3xx•xQ~x,t !L ,

56ket1O~ t0! as t→`, ~2.7!

whereQ is normalized to unity:

E d3xQ~x,t !51. ~2.8!

For the purposes of numerical simulation a particu
member of the velocity-field ensemble is then realized
@1,2,4#

u~x!5A(
n51

N

$~jn cosc2xn3 k̂n sinc!3kn cos~kn•x!

1~xn cosc1jn3 k̂n sinc!3kn sin~kn•x!%, ~2.9!

where the vectorsjn and xn are distributed uniformly and
independently over the unit sphere and the wave vectorkn is
distributed according to the distributionE(k). For N suffi-
ciently large the central limit theorem guarantees thatu(x) is
5-2
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Gaussian up toO(1/N) corrections. We have usedN564,
for which these effects are sufficiently small for our pu
poses.

To simulate the evolution of the scalar fieldQ(x,t), we
numerically integrate the stochastic equation for the evo
tion of a particle with pathx(t) given by

ẋ~ t !5u„x~ t !…1h~ t !, ~2.10!

where h(t) is a Gaussian random variable with^h(t)&50
and ^h(t)•h(t8)&52k0d(t2t8). The resulting probability
distribution for particle positionx(t) is thenQ(x,t) with the
initial condition Q(x,0)5d(x).

The discrete form of Eq.~2.10!, suitable for numerical
integration, is

xn112xn5u~xn!Dt1~2k0Dt !1/2en, ~2.11!

whereen is a Gaussian random 3 vector of zero mean a
unit variance for each component. This equation models
~2.10! correctly to O(Dt), but the details of a third-orde
Runge-Kutta scheme correct toO(Dt3) were given in Ref.
@4#. We use this third-order scheme in our numerical sim
lation.

The effective diffusivityke is then computed from the
ensemble of paths by

^x~ t !•x~ t !&paths5 lim
M→`

1

M (
a51

M

x~a!~ t !•x~a!~ t !,

56ket1O~1! as t→`. ~2.12!

HereM is the total number of paths averaged over, and~a!
labels the member of the ensemble of paths. In practice,M is
finite but large enough to give an estimate ofke with small
error. In addition,t must be large enough so that the pa
evolution is in the asymptotic regime where the evoluti
can be suitably described in terms of long-range effective
‘‘renormalized’’ quantities. Thatt is large enough is teste
by ensuring that the estimate forke is independent oft
within statistical errors.

III. PERTURBATION THEORY

The perturbative approach to solving Eq.~2.6! is well
known @8,9,6#, and we only summarize the necessary res
here. Since we are interested in the effective parameters
erning the evolution of the distributionQ(x,t), we study the
related Green functionG(x), which satisfies

k0¹2G2u•“G52d~x!, ~3.1!

where the incompressibility ofu has been used. A perturba
tion series inu/k0 for G̃(k) can be generated by iterating th
formal solution to Eq.~3.1! in Fourier space:

G̃~k!5
1

k0k2 1
1

k0k2 E dq

~2p!3 i ~k2q!•ũ~q!G̃~k2q!.

~3.2!
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The Green function averaged over the velocity ensem

^G̃(k)&, can then be written as

^G̃~k!&5
1

k0k22S~k!
, ~3.3!

where the averaging over the velocity ensemble is done
ing Wicks theorem to give a diagrammatic expansion, a
S(k) is given by one-particle irreducible diagrams. Th
asymptotic behavior in Eq.~2.12! implies that the small-k
behavior of^G̃& is given by

ke5k02
d

dk2 S~k!U
k50

. ~3.4!

The Feynman rules for the diagrammatic perturbation exp
sion are as follows

~i! The wave vector is conserved at each vertex.
~ii ! Each full line carries a factor of 1/k2.
~iii ! The wave vector is integrated around closed loo

with a factordq/(2p)3.
~iv! The primitive vertexV i(k8,k), whose diagrammatic

representation is shown in Fig. 1~a!, is given byV i(k8,k)
5 ik i8 .

~v! Each internal dotted line carries a factor

FIG. 1. The vertices occurring in the perturbation schemes:~a!
The primitive velocity field vertex.~b! The primitive vorticity ver-
tex. ~c! The bare complete vertex of the effective diffusion equ
tion. ~d! The renormalized complete vertex approximated as a s
of renormalized vertices associated with the velocity field and
vorticity.
5-3
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Fi j ~k!5F~k!~k2d i j 2kikj !1C~k!i e im jkm . ~3.5!

In what follows we use the explicit spectra

F~k!5
~2p!3/2

6k0
2 u0

2e2k2/2k0
2
,

~3.6!
C~k!5lkF~k!,

wherel5sin 2c.
The simple two-loop calculation forke gives the result

ke5k0S 11
1

9

u0
2

k0
2k0

2 1~0.0059l220.00884!
u0

4

k0
4k0

4D .

~3.7!

The diagrams contributing to this order are shown in Fig
The two-loop integrals were done numerically.

The effect of helicity is not seen until second order. Th
is evident from the explicit expressions for the diagrams,
is also easily understood because the effect of helicity onke
cannot depend on the sign ofl. Hence the graphs with a
nonvanishing contribution from the helicity must contain
even number of internal velocity correlators~dotted lines!.
Clearly, this approach is not applicable to the limitk0→0 in
which we are interested, but a self-consistent method
allow the model to be perturbatively analyzed in this lim
this is described in Sec. IV.

IV. SELF-CONSISTENT METHODS

A self-consistent treatment performs a resummation of
infinite subset of diagrams which gives a continuation of
perturbation theory beyond its normal radius of convergen
The approach is not unique, but depends on how the ef
tive low energy theory is parametrized, and which quantit
are treated self-consistently. A successful result will dep
on how well the method captures the dominant effects in
way.

We first discuss the simplest approach which treats o
ke self-consistently. At two loops this gives an excellent
for ke whenl50, but fails forlÞ0. We then generalize th
method, and show that we can qualitatively explain the la
enhancement inke due to helicity although the approach
still quantitatively deficient. Further generalizations are d
cussed but have not yet been carried out.

FIG. 2. The graphs that contribute to two-loop simple pertur

tion theory forG̃(k).
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A. Self-consistency inke

To generate the self-consistent perturbation series inke ,
Eq. ~3.1! for G(x) is formally rearranged to become

ke¹
2G2Dk¹2G2u•“G52d~x!, ~4.1!

where Dk5ke2k0 . The second term is a counterter
which is included as a part of the perturbation. It is forma
of first order in the expansion parameter, which allows
expansion forke to be constructed to a consistent order. T
self-consistent perturbation series is generated by iteratin

G̃~k!5
1

kek
2 1

1

kek
2 E dq

~2p!3 @ i ~k2q!•ũ~q!

2Dkd~q!~k2q!2#G̃~k2q!. ~4.2!

This equation can be rewritten as an equation forDk, and its
diagrammatic representation up to two loops is shown in F
3~a!. Sinceke is not renormalized from the tree-level valu
we have the self-consistency condition

d

dk2 S~k!U
k50

50. ~4.3!

To Nth order inu0
2/ke

2k0
2, it is always possible to write this

condition in the forms

ke5k01keFN~ke ,l!,
~4.4!

FN~ke ,l!5 (
n51

N

gn~l!S u0
2

ke
2k0

2D n

.

From now on we setu051 and k051 and, using the
velocity-field spectrum given in Sec. II, we find the two-loo
self-consistent expression forke :

~ke2k0!S 12
1

9ke
2D 5keS 1

9ke
2 1

1

ke
4 @0.0059l220.00884# D .

~4.5!

This result can be re-expressed in the form of Eq.~4.9! to
become

- FIG. 3. The perturbation expansion to two loops of the se
consistent relation forke .
5-4
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ke5k01keS 1

9ke
2 1

0.003510.0059l2

ke
4 D . ~4.6!

We show the two-loop self-consistent prediction forke com-
pared with data in Figs. 7–11. In Figs. 7, 8, and 9,ke is
plotted againstk0 for fixed l 50.0, 0.4, and 1.0 and in Figs
10 and 11ke is plotted againstl for fixed k050.0 and 0.2.
As should be expected, we see from Figs. 8 and 9 that
agreement between theory and simulation is acceptable
value ofk0 that is large enough. This is simply because
large molecular diffusivity swamps all other effects. How
ever, there is a large disagreement for smallk0 which is most
marked for k050. The prediction forke behaves like
O(l2), and fork0 changes fromke50.3697 atl50 to ke
50.4090 atl51: an increase of 10%. In contrast, the sim
lation gives ke50.3705(1) andke50.8018(7), respec-
tively, at these two values ofl: an increase of more than
factor of 2. From the simulation fork0 small enough we find
thatke as a function ofl is strongly in disagreement with th
slow polynomial behavior inl predicted by self-consisten
perturbation theory. This effect was first observed in Ref.@4#
and has remained unexplained.

In addition, in Fig. 9 we observe a marked dip in the d
at fixedl51 for ke versusk0 at aboutk050.2. The major
feature is thatke rises rapidly withl at k050, whereas the
effect for k0>0.2 is much less strong: the dip is not a low
ering of the curve asl increases atk050.2, but rather a
rapid rise withl at k050. The self-consistent prediction o
this section does not predict a dip of any kind.

B. A more general approach

In this section we propose an explanation of the enhan
ment ofke by helicity in the flow. The technique is presente
in detail at the one-loop level and the extension to the tw
loop level is then given.

The philosophy is to suggest an effective, low-wav
vector diffusion equation obeyed by the smoothed distri
tion function. Because the wave vector is small it is assum
that the equation can be limited to at most two spatial
rivatives. The shortcomings of this assertion are discus
later. We propose the equation

dQ

dt
5k0¹2Q2aRu•“Q2bRv•“Q, ~4.7!

wherev is the vorticity andaR and bR are coupling con-
stants which must be determined self-consistently. The b
values of these couplings,a0 and b0 , define the original
diffusion equation. From Eq.~2.6! we see that in our cas
a051 andb050, but the analysis may be applied for ge
eral values ofa0 and b0 . Equation~4.7! is equivalent to
renormalizing the velocity field touR5aRu1bRv. It will
turn out that a is not renormalized, and so the se
consistency conditions are applied only to determineke and
bR . To this end the equation forG(x) is taken to be
06120
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ke¹
2G2Dk¹2G2a0u•“G2bRv•“G1Dbv•“G

52d~x!, ~4.8!

where, as before,Dk5ke2k0 andDb5bR2b0 . The rules
for perturbation theory are the same as given in Sec. III, w
the following additional rules

~vi! The primitive vertexW i(k8,k) associated with the
vorticity and whose diagrammatic representation is shown
Fig. 1~b!, is given byW i(k8,k)5(k83k) i .

~vii ! For each vertex of typeV i there is a factor ofaR ,
and for each vertex of typeW i a factor ofbR .

The self-consistent equations are given by setting the n
renormalizations ofke andbR to zero in perturbation theory
This gives two equations which simultaneously determ
ke , aR , andbR in terms of the bare parametersk0 , a0 , and
b0 . It is convenient to define a general vertexUi(k8,k) of
the form

Ui~k8,k!5 iV~k8,k!k i81W~k8,k!~k83k! i , ~4.9!

where the form factorsV andW are scalar functions ofk and
k8. The bare vertexUi

0 is defined byV05a0 andW05b0 .
There is no independent form-factor coefficient proportio
to k i in this expansion, since the velocity field is incompres
ible. The diagrammatic representation ofUi

0 is shown in
Figs. 1~c! and 1~d!, where the bare vertex is represented
an open circle while the renormalized vertex additiona
carries an inset letterR. Likewise, the general expression fo

^G̃(k)& can be defined as

^G̃~k!&5
1

k2@k01V~k2!#
. ~4.10!

To two loops the self-consistent relationships that hold
tween diagrams are shown in Fig. 5.

We are interested in the low-wave-number properties
the theory, and we use the approximations

V~k2!5~ke2k0!1O~k2!,

VR5aR1O~k2,k82,k•k8!,

WR5bR1O~k2,k82,k•k8!. ~4.11!

These approximations are consistent with the form con
ered for the effective equation governing the dispersal@Eq.
~4.7!#, since the renormalized couplings,aR and bR , are
given respectively by the coefficients ofk i8 and (k83k) i in
the expansion ofUi . To include higher powers ofk andk8
would, for consistency, require terms involvingu and v in
Eq. ~4.7! with higher powers of“. In principle, a functional
self-consistent formalism could then be set up forV(k) and
Ui(k8,k) treating them respectively as a vector and matri
in wave-number space. However, this is a further gener
zation that we have not yet pursued, because the amou
computing effort required to determine them numerically
prohibitive. In the present case we are interested only in
low-wave-vector behavior of these functions, and then
5-5
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self-consistent equations are determined by asserting
self-consistency in the limitk8,k→0 and using Eq.~4.11!.

The calculation is now straightforward but tedious. A
loop integrals are approximated by their lowest nonz
power in (k,k8), and their contribution to the renormaliza
tion of the relevant coupling constant is read off. It suffic
to give some examples which indicate how the full resul
obtained, and to this end we first analyze the one-loop
proximation to the self-consistent equations in detail. T
first observation is thata is not renormalized, i.e.,aR5a0 .
We give one example indicating how this comes about. T
graphs are labeled by couplings corresponding to the type
vertex they contain, and the label is ordered in the sa
order that they occur in the graph. We consider the contri
tion shown in Fig. 4 to the vertex renormalization, and w
concentrate on the part proportional tok8. The value of this
graph is

Tbaa5aR
2bRE dq

~2p!3

e lmnkmqn~k82q!p•k i8Flp~q!

ke~k2q!2ke~k82q!2 .

~4.12!

The approximations of Eq.~4.11! have been implemented
Only the helical part ofFi j (q) contributes, and we find the
result

Tbaa5
aR

2bRl

ke
2 ik i8E dq

~2p!3

3
e lmnkm•qn~k82q!p•qe lpqqqF~q!

~k2q!2~k82q!2

5
aR

2bRl

ke
2 ik i8E dq

~2p!3

~k•k8q22k•qk8•q!qF~q!

~k2q!2~k82q!2 .

~4.13!

Clearly the contribution toV is O(k•k8) and soa is not
renormalized. All contributions toV are similarly of higher
order and the result is thataR5a0 .

The couplingb is renormalized whenlÞ0. The calcula-
tion follows a similar path to that used in the analysis of t
renormalization ofa. Again we show one calculation explic

FIG. 4. An example of the kind of vertex graph that must
evaluated in the solution of equations shown in Fig. 5, once
approximation forUR given in Eq.~4.11! and shown in Fig. 1 is
used. This graph is labeledTbaa .
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itly and consider the contribution toW(k,k8) by calculating
the coefficient of (k83k) in Taaa :

Taaa52 i
aR

3

ke
2 E dq

~2p!3

~k2q! l•~k82q!nFln~q!

~k2q!2~k82q!2 .

~4.14!

The contribution proportional to (k83k) comes only from
the helical part ofFln(q) and so the relevant term is

Taaa;
aR

3l

ke
2 E dq

~2p!3

e lnpk l•kn8qp•qmqF~q!

~k2q!2~k82q!2 .

~4.15!

Hence we find the contributiondbR to the renormalization of
b from Taaa to be

dbR52
a3l

6p3ke
2 E dqqF~q!. ~4.16!

The renormalization ofbR is expressed in terms of thre
integrals:

I n5
1

6p3 E dqqnF~q!, n51,2,3. ~4.17!

After evaluating all the relevant graphs the self-consist
equations are

aR2a050,

b02bR1~aR
3lI 112aR

2bRI 21aRbR
2lI 3!50. ~4.18!

The approximate equation forG̃(k) is given by the equa-
tion for S(k) in terms of the one-particle irreducible graph
in Fig. 5 at one-loop order. Because we are using a lo
wave-number approximation, this reduces to substituting
expression for the renormalized vertexUi(k8,k) given in
Eqs.~4.9! and ~4.18! into the one-loop diagram forS(k) in
Fig. 5. We analyze the one-loop self-energy graph and k
only the term proportional tok2. In obvious notation this
gives the results

Taa;2
2aR

2

ke
I 2 , Tba;

2aRbRl

ke
I 3 . ~4.19!

Using the spectra in Eq.~3.6!, Eqs.~4.18! and~4.19! for the
one-loop self-consistent conditions become

Da[aR2a050, 2Db1
B1

ke
2 50, Dk1

C1

ke
50.

~4.20!

where

e
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B15
1

18S 2aR
2bR12A2

p
aRbR

2l1A2

p
aR

3l D ,

~4.21!

C152
1

9 S aR
214A2

p
aRbRl13bR

2 D .

From these equations it is clear that no renormalization
curs if there is no pseudoscalar or axial-vector quantity in
problem: if b05l50, then the problem reduces to the on
loop self-consistent analysis presented in Sec. IV A. Ho
ever, if eitherb0 or l are nonzero thenb is renormalized and
the effect onke is encoded in Eq.~4.20!. In our case we se
aR5a051, b050, andlÞ0. Equations~4.20! and ~4.21!
then give

3Ap

2
b313bR

2l19Ap

2
kek0bR2

l

2
50.

~4.22!

ke5k01
1

9ke
S aR

214A2

p
aRbRl13bR

2 D .

For smalll andk050, we deduce that

b;S 1

18p D 1/6

l1/3⇒ke;
1

3
1

1

2 S 1

18p D 1/3

l2/3. ~4.23!

FIG. 5. The perturbation expansion to two loops of the gene
self-consistent condition relating the self-energyS~k! and vertex
UR(k,k8) functions. The vertex function is represented by the cir

with inset andR, the full Green function byG̃(k) by the filled box;
DU5UR2U0.
06120
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The data forke versusl for k050 is shown in Fig. 10,
and we see that for smalll the simulation results are no
compatible withl2/3 behavior. We shall see below that th
is not rectified in the two-loop self-consistent calculatio
However, in this one-loop calculation there is a considera
enhancement in the dependence ofke on l, whereas in the
self-consistent calculation of Sec. IV A, in which the gene
tion of the new vertex coupled to the vorticityv was not
included, there is no effect at all at one-loop order and o
a mild effect at two-loop order. Equation~4.22! can be
solved numerically. For example, fork050 andl51, we
find bR50.3456, and the effective velocity field is predicte
to be

uR5u1bRv, ~4.24!

which clearly leads to an enhanced effective diffusivityke
50.5207, compared withke50.4090 from the two-loop cal-
culation of Sec. III. We believe that we have qualitative
captured the mechanism responsible for the enhanceme
the effective diffusivity by helicity.

The one-loop calculation is limited because it is not ac
rate atl50, unlike the two-loop calculation. We have inve
tigated the two-loop extension of the self-consistent
proach when the new vertex with couplingb is included.
This is more involved, and the integrals were done num
cally. We present the final results below.

The two-loop self-consistent equations are

Dk1
C1

ke
2Db

1

ke

]C1

]b
1

1

ke
3 ~C22C1

2!50,

~4.25!

2Db1
B1

ke
2 12

Dk

ke
3 B12Db

1

ke
2

]B1

]b
1

B2

ke
4 50,

whereB1 andC1 are given in Eq.~4.21!, andB2 andC2 are
evaluated numerically to be (aR5a051)

B252~0.0047l10.0095b10.0180bl210.0644b2l

10.0423b310.0252b3l210.0287b4l!,
~4.26!

C250.008820.0034l220.0165bl20.0315b2

20.0110b2l220.0514b3l10.0090b420.0337b4l2.

Equations~4.25! can be rearranged to give

Dk1
C1

ke
2 1

1

ke
3 S C22C1

22B1

]C1

]b D50,

~4.27!

2Db1
B1

ke
2 1

1

ke
4 S B222B1C12B1

]B1

]b D50.

We shall setb050 from now on. These equations conta
the accurate two-loop self-consistent result which fits
data for allk0 at l50. ForlÞ0 these equations are solve
numerically and the results are compared with simulat
data in Figs. 7–11 As in the one-loop case, the behavior
small l is clearly incorrect, and there is no quantitativ

l
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agreement with the data. However, there is a clear enha
ment of ke due to the inclusion of the vorticity vertex an
associated couplingb, and forl51.0 we findke50.5959.
This mechanism for enhancing turbulent diffusion cannot
obviously deduced from perturbative considerations. It ari
from a resummation of diagrams which give an express
that analytically continues between the regions wherel2

!u0
2/k0

4k0
4 andl2@u0

2/k0
4k0

4. The effective diffusivity in the
former region is well predicted by perturbation theory, b
not so for parameters in the latter region. Although quant
tive agreement is not good, the important point is tha
mechanism has been discovered which gives a strong
hancement to the value ofke for nonzerol even in the
one-loop approximation, whereas in the self-consist
theory forke alone, discussed in Sec. III, there is no effect
helicity at all on the value ofke at one-loop order. The
obvious reason for the discrepancy in this approach is
the approximations made are much too crude. A more
fined calculation would use a functional self-consiste
method forUi(k8,k) @Eq. ~4.9!# andV(k2) @Eq. ~4.10!#. Al-
though a computationally formidable task, this is likely
encode the correct behavior much more accurately than
our low-wavenumber approximation. The origin of the dip
Fig. 9 in the curveke versusk0 for l51 is unexplained by
the theory presented so far.

V. FUNCTIONAL HARTREE-FOCK METHOD

This approach goes some way toward including effe
omitted in the low-wave-number approximation. The vers
presented here is deficient in that the prediction forke , when
k05l50, is not as accurate as the two-loop self-consist
approach, but the advantage is thatV(k2), Eq. ~4.10!, is
treated as a function to be determined self-consistently by
Hartree-Fock equations. The vertices are still treated in
low-wave-number approximation, and, as in Sec. IV, th
are parametrized bya andb.

The integral equation to be satisfied byV(k2) and the
one-loop equation satisfied by the vertex function, which
the same as the one-loop self-consistent equation, are sh
in Fig. 6. Note that, unlike the self-consistent calculation
Sec. IV, only one of the vertices in the one-loop self-ene
is replaced by the full vertex, since this gives the corr

FIG. 6. The integral Hartree-Fock equations forV(k) andUR in
terms of the general verticesUO and UR. The full Green function

G̃(k) is denoted by the filled box. The equation forV(k) is correct
to all loop orders, but the equation forUR is correct to one-loop
order only
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counting of diagrams when the equations are iterated.
self-consistent case is different because the augmented
tex is already present in the perturbation theory, and cor
tions are implemented by counter terms. The approxima
for the vertices in Eq.~4.11! is used andb is determined
using Eq.~4.20!:

b5b01
B1

ke
2 , ~5.1!

whereB1 is given in Eq.~4.21! and usingke5k01V(0).
The Hartree-Fock equation to be satisfied byV(k2) is then
@after some reduction, and usingf in Eq. ~3.6!#,

V~k2!5
1

k2 F 2

3A2p
e2k2/2

3E dp
@pk cosh~pk!2sinh~pk!#e2p2/2

pk@k01V~p2!#

1blE d3p

~2p!3

up1kuf~ up1ku!@k2p22~k•p!2#

p2~k01V~p2!! G .

~5.2!

These equations are solved by discretizing the wave vec
performing the integrals numerically, and iterating the eq
tions to converge to a solution forV(k2). The effective dif-
fusivity is thenke5k01V(0).

The results are shown in Figs. 7–11, where it is clear t
while the numerical value predicted atk05l50 is not ac-
curate, the behavior for smalll is more in keeping with the
simulation results. This strengthens our belief that an an
sis which treats the propagator and vertex as functions to
determined self-consistently is likely to reproduce the d

FIG. 7. ke vs k0 for fixed helicityl50.0. The simulation data
are shown~s! to be compared with the predictions of two-loo
self-consistent perturbation theory~solid line!, the Hartree-Fock
calculation ~long-dashed line!, the renormalization group~dashed
line! and ordinary perturbation theory~dot-dashed line!.
5-8
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sired properties more accurately. However, atk050 andl
51 the value predicted iske50.5070, still much less than
the simulation value of 0.8018~7!.

In principle, the vertex may be treated as a function in
same manner asV(k2). This is prohibitively expensive in
memory and computer time, but might be possible if so
simplification of the functional form were implemente
Also, while the equation forV(k2) is already exact at the
one-loop level, that for the vertex is not, and we cannot p

FIG. 8. ke vs k0 for fixed helicityl50.4. The simulation data
are shown~s! to be compared with the predictions of two-loo
self-consistent perturbation theory inke ~solid line!, andke ,b ~dot-
ted line!, the Hartree-Fock calculation~long-dashed line!, the renor-
malization group~dashed line!, and ordinary perturbation theor
~dot-dashed line!.

FIG. 9. ke vs k0 for fixed helicityl51.0. The simulation data
are shown~s! to be compared with the predictions of two-loo
self-consistent perturbation theory inke ~solid line! andke ,b ~dot-
ted line!, the Hartree-Fock calculation~long-dashed line!, the renor-
malization group~dashed line!, and ordinary perturbation theor
~dot-dashed line!.
06120
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clude that higher loop corrections might be important. W
have not pursued this approach. We note that in this
proach, as with those of the previous sections, the mar
dip in ke as a function ofk0 for the larger values ofl is not
reproduced.

VI. RENORMALIZATION GROUP

In Sec. V we presented an analysis based on the assu
tion that the large-scale advection is controlled by an eff
tive transport equation dominated by the terms contain
only one and two derivatives. This method is related

FIG. 10. ke vs l for fixed diffusivity k050.0. The simulation
data are shown~s! to be compared with the predictions of two-loo
self-consistent perturbation theory inke ~solid line! andke ,b ~dot-
ted line!, the Hartree-Fock calculation~long-dashed line!, and the
renormalization group~dashed line!.

FIG. 11. ke vs l for fixed diffusivity k050.2. The simulation
data are shown~s! to be compared with the predictions of two-loo
self-consistent perturbation theory inke ~solid line! andke ,b ~dot-
ted line!, the Hartree-Fock calculation~long-dashed line!, and the
renormalization group~dashed line!.
5-9
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renormalization group methods which have proved very s
cessful in predicting exponents in critical phenomenon.
the RG approach a large wave-number cutoffL is intro-
duced, and advection on scales larger thanL[2p/L is as-
sumed to be described by an effective transport equation
principle containing terms with an arbitrarily high number
derivatives. The parameters in this equation are function
L in order to account for the effect of advection at sca
smaller thanL which has been excised. In the limitL→0 the
effective equation, by dimensional analysis, takes a sim
form dominated by terms with few derivatives and with a
sociated effective or ‘‘renormalized’’ parameters. In this w
the effective equation takes a form similar to that used
Sec. V. There is a difference, however, because any prac
application of these schemes requires a drastic truncatio
the operator space: this is especially true in the RG meth
where it is impossible to compute the flow with changingL
for very many parameters in the effective transport equat
Unlike the situation in critical phenomena, there are no
frared divergences in the theory, and the notion of a relev
operator is not applicable. It is then a matter of trial and er
to determine whether the approach used captures the
features controlling the flow. The simplest renormalizati
scheme is to calculate the renormalization to the diffusiv
k~L! and to the vertex associated with the coupling of
random field or externally applied drift. In the case of gra
ent flows, we demonstrated in Ref.@7# that this scheme
yields exact results in one and two dimensions and an
tremely accurate, although not exact, result in three dim
sions. It is, in general, much harder to calculate the ren
malized parameters such aske than the associated exponen
and so the success in Ref.@7# suggests that some insight ma
be gained using RG methods in other similar problems.

In this section we present a RG calculation ofke . The
vertex renormalization is done but multiple vertex renorm
ization is neglected, which means that the renormalized
locity field remains Gaussian. Consequently, after integra
out the random field down to a wave numberL, we postulate
that the equation for the effective Green function can
approximated, for allL, by an equation of the same form a
the original one@Eq. ~3.1!#,

k~L!¹2G~x,L!2u~x,L!•“G~x,L!52d~x!, ~6.1!

where k~L! is the running renormalized diffusion consta
anduL is the renormalized velocity field. Since we renorm
ize the vertex functionally, the field correlation function w
flow under the RG as

^ũi~k,L!ũ j~k8,L!&5H ~2p!3d~k1k8!Fi j ~k,L!, uku,L

0, uku.L,

~6.2!

where

Fi j ~k,L!5F~k,L!~k2d i j 2kikj !1C~k,L!i e im jkm . ~6.3!
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One finds that the renormalized field is still incompressib
We shall compute the flow equations fork~L!, F(k,L), and
C(k,L) asL varies.

The change ink~L! on integrating out wave vectors in th
shell (L,L2dL) is

dk~L!52
1

3p2k~L!
L2F~L,L!dl. ~6.4!

If one calculates the vertex renormalization, and treat
as an addition to the random field one finds

ik•dũ~q,L!1O~k2!

52
i

~2p!3 E
L2dL

L Fi j ~q8,L!kiqjqk8ũk~q,L!

k2~L!q82~q1q8!2 dq8, ~6.5!

where we have only kept the vertex term to lowest order ink,
as it is only this term that contributes to the one-loop diff
sivity renormalization. In addition, if one assumes that it
the low-wave-number~long distance! renormalization of the
velocity field which is important for the effective diffusivity
one finds, to lowest order inq,

dũi~q,L!'2
1

~2p!3k2~L!
qj ũk~q,L!

3E
L2dL

L Fi j ~q8L!qk8

q84 dq8. ~6.6!

In the case where no helicity is present we see that the ve
is not renormalized. However~as pointed out Sec. III!, while
the helicity does not contribute to the diffusivity renorma
ization at a one-loop level it renormalizes the velocity fie
The renormalization is zero at order 0 inq but has an order 1
effect:

dũi~q,L!'2
1

6p2k2~L!
e i jkqj ũi~q,L!C~L,L!dL,

~6.7!

In real space therefore, the renormalization is of the form

u→u1dLb~L!“3u. ~6.8!

Using the renormalization ofũ, one may compute the flow o
Fi j , and thusF andC, to obtain the one-loop functional RG
equations:

]k

]L
52

1

3p2k~L!
L2F~L,L!,

~6.9!
]F~q,L!

]L
52

1

3p2k2~L!
C~q,L!C~L,L!,

]C~q,L!

]L
52

1

3p2k2~L!
q2F~q,L!C~L,L!

The integration of Eqs.~6.9! is from L5` to 0, with the
initial conditions
5-10
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k~`!5k0 ,
~6.10!

F~q,`!5F~q!,

C~q,`!5C~q!.

When there is no helicity there is no vertex renormaliz
tion at the order we are considering, and therefore we m
integrate the equations directly to obtain

ke5~k0
212u0

2/9!1/2. ~6.11!

This agrees with the one-loop perturbation result, as
should, and in the casek050 we find that ke5&/3
50.47140, which is quantitatively not very close to the n
merically measured resultke50.3697. However, the dis
crepancy is sensitive to the form assumed for the effec
diffusion equation. In our case this is given by Eq.~6.1!,
which is clearly inadequate sinceu is not renormalized when
l50. An improvement can only be made by including term
with higher derivatives ofu. This is similar to parametrizing
the nonhelical form factorVR of Eq. ~4.9! with a function of
external momenta rather than approximating it by a cons
aR which is not renormalized. This is a possible avenue
research but we have not yet followed it.

In contrast, forlÞ0, u is renormalized and the effect o
ke is significant because the helical form factorWR, Eq.
~4.9! is renormalized at low wave number, as parametriz
by b~L! above. The RG equations may be integrated num
cally, and are compared with simulation in Figs. 7–11. A
though the results are not quantitatively accurate, they c
ture the qualitative behavior seen in the simulations.
particular, the RG predicts the large enhancement as a f
tion of l seen in the data, and also predicts the dip obser
in the graph ofke versusk0 for sufficiently largel.

Indeed, the qualitative success of the method suggests
the difficulty in obtaining predictions that are more accur
might lie with the inadequacy of the simple ansatz wh
applied to the case whenl50. The effect of helicity is nev-
ertheless well captured in this approach, because this effe
dominated by the renormalization ofb~L!.

A technical point in the numerical integration is thatk0
50⇒k(`)50, and the evolution equations are ill defined
the limit L→`. This problem is easily rectified by makin
k0 very small but nonzero. The integration procedure is th
well defined, and the results are insensitive to the exact v
of k0 in this case.

We therefore believe that although the renormalizat
procedure is not quantitatively accurate~as should be ex-
pected as it does not give very accurate results in the abs
of helicity!, it successfully incorporates the underlyin
mechanism for the enhancement of the diffusivity by helic
at small bare molecular diffusivity.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have studied the problem of turbul
advection of a scalar field by an incompressible flow w
helicity l, 0<l<1.0, and background molecular diffusivit
k0 . We have performed computer simulations of the adv
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tion for flows with properties described in Eqs.~2.1!–~2.4!,
and compared the long-range effective parameters descri
the time evolution of the scalar field with various schemes
calculation. In particular, we have concentrated on how
effective diffusivityke depends onk0 andl. In earlier work
we found a strong anomalous enhancement ofke as a func-
tion of l for k050.0 @4#, which was unexplained theoret
cally, and this is the motivation for the present study. In th
earlier work the turbulent velocity field was time depende
whereas here it is not. This allows for easier calculat
while still reproducing the effect.

The important region for discussion can be seen from
simulation data,~Figs. 7–11! to bek0,0.2; for largerk0 the
molecular diffusivity begins to dominate, and not only is t
effect of helicity suppressed but also the many scheme
calculation give good approximations forke . For l50.0 we
find that the two-loop self-consistent calculation ofke repro-
duces the simulation data for allk0 very closely indeed, as is
seen in Fig. 7 and described in Sec. IV. The other sche
also plotted are much less accurate in the region of inter
Ordinary perturbation theory is not convergent in this reg
and will be discussed no further. The reason why
Hartree-Fock and RG methods are less accurate is tha
vertex functionV(k8,k) @Eq. ~4.9!#, is not renormalized for
low wave number, which means that the associated coup
a is not renormalized. The Hartree-Fock method atl50
sums rainbow diagrams, but does not include any diagra
corresponding to a vertex correction, unlike the se
consistent theory. In the self-consistent theory the one-l
prediction for k050 is ke51/3 and the two-loop terms
modify this bydke;0.04, of which the two-loop cross dia
gram in Fig. 3 contributes only 10%, ordke;0.004. In omit-
ting terms similar to this latter one, the Hartree-Fock a
proximation should therefore not be expected to be
discrepant, and this is seen to be the case. The RG calc
tion gives a form which must yield the simple one-loop pe
turbation theory expression at largek0 , but allows continu-
ation to k050; this is given in Eq.~6.11!. In the case of
gradient flows the RG approach is remarkably successful@6#,
and this is attributed to the fact that in that case the primit
vertex is renormalized at low wave number. The reason
examining schemes alternative to self-consistent method
that forl.0 agreement between simulation data and the
is poor, and it is necessary to investigate different approac
in order to test different hypotheses for a simple descript
of the observed anomalous effect.

For k0.0.2 all schemes except ordinary perturbati
theory begin to show reasonable agreement with the d
and for k0.0.5 all schemes clearly reproduce the resu
We concentrate on results fork0,0.2, and the anomalou
enhancement ofke by helicity in this region is seen in Fig
10, whereke is plotted againstl for k050, and is charac-
terized by a rapid rise inke for l.0.2. An alternative aspec
is seen in Fig. 9, whereke is plotted againstk0 for l51.0.
The significant dip atk050.2 is due to the large effect o
helicity on ke compared with the much reduced effect
k0;0.2. It has proved very difficult to convincingly explai
these features. However, we have been able to sug
mechanisms which show the presence of helicity in the fl
5-11
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can produce a large change inke from the nonhelical value
and even though these have not yet yielded quantitative
dictions they do point toward a reasonable explanation.

The basic idea is to recognize that the effective equa
governing the advection should contain terms not presen
the original equation. The terms can be thought of as be
induced in the low-wave-number effective theory by in
grating out higher wave numbers. This may also be view
as the renormalization of the related vertex functions of
theory corresponding to a selective resummation of d
grams. In our approach we have assumed that a low-w
number approximation will be valid, and so that such ter
will contain a minimum number of derivatives. These ide
can be implemented in different ways and we tried se
consistent, Hartree-Fock, and renormalization group
proaches. The self-consistent and Hartree-Fock methods
based on the effective evolution equation~4.7! which corre-
sponds to a low-wave-number enhancement of the flow
locity uR5u1bRv, wherev is the vorticity. We performed
a two-loop calculation self-consistent in bothke andbR , as
described in Eq.~4.25! and Fig. 5. The results show that
strong enhancement inke is predicted, but that the magn
tude forl51.0 andk050.0 is too small and the form of th
dependence ofke on l disagrees with the data. This is pa
ticularly true at smalll for k050.0, where, from Fig. 10 we
see thatke is only weakly dependent onl, l,0.3, whereas
we predictke;a1blp for fractionalp: the one-loop result
is p52/3.

The Hartree-Fock method, shown diagramatically in F
6, computes the complete propagator in terms ofV(k2) @Eq.
~4.10!# as a sum of the rainbow diagrams generated from
effective equation~4.7! with bR given by the one-loop resul
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2 whereB1(bR) is given in Eq.~4.21! and

ke5k01V(0). A rise inke with l is predicted, but not one
large enough to agree with the data. However, the beha
at smalll is a much slower rise, which is more in keepin
with the data than the self-consistent prediction in this
gion.

The renormalization group method is a different approa
in that it considers a running diffusivityk~L! and velocity
field u(x,L) which satisfy k(`)5k0 , k(0)5ke , and
u(x,L)5u(x). There are three coupled RG flow equation
@see Eq.~6.9!#, for k~L! and the two running spectral func
tions F(q,L),C(q,L) which correspond to the definition
in Eq. ~6.3!. The important feature of the RG flow equation
is thatk~L! appears in the denominators. The numerators
suppressed at largeL by the spectral functions, and so th
major contribution is from intermediate values ofL: L
;k0 . This contribution is strongly enhanced for smallk0 ,
and results in the prediction of the dip structure observed
the data but not predicted by the other methods.

From our investigation we must expect that a proper
planation of the observed effects will require the correct
fective equation and the consequent generation of new
tices, but that unlike thel50 case the low-wave-numbe
approximation will be insufficient since, although an e
hancement is predicted forlÞ0 the rapid rise is not repro
duced and no dip is observed. The RG method suggests
the main contribution is from wave numbersk;k0 support-
ing this latter conclusion. A successful approach sho
therefore include more terms in the effective flow equation
combination with an RG approach. The challenge is to
tain accurate results for alll includingl50 by such a tech-
nique. Work in this direction is currently underway.
.
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